

Mother Teresa Women's University, Kodaikanal
Department of Mathematics
Choice Based Credit System (CBCS) (2021-2022 onwards)
M.Sc. Mathematics

1. Programme Outcomes (POs)

PO1	To carry out scientific investigation objectively without being biased with preconceived notions.
PO2	Analyze problems, formulate a hypothesis, evaluate and validate results, and draw reasonable conclusions thereof.
PO3	Pursue research in Mathematical Sciences and allied fields, or careers in industry.
PO4	Acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematical Sciences.
PO5	To become an enlightened citizen with commitment to deliver one's responsibilities within the scope of bestowed rights and privileges.

2. Programme Specific Outcomes (PSOs)

PSO1	Understand the fundamental axioms in mathematics and capable of developing ideas based on them.
PSO2	Pursue research studies in mathematics and related fields.
PSO3	Have advanced knowledge on topics in pure mathematics and to pursue higher degrees at reputed academic institutions.
PSO4	Acquire skills in problem solving, thinking, creativity through assignments, etc.
PSO5	Compete in competitive exams e.g. NET, GATE, etc.

M.Sc. MATHEMATICS CURRICULUM

$\begin{array}{\|l} \hline \mathbf{S} . \\ \mathbf{N} \\ \mathbf{O} \\ \hline \end{array}$	Course Code	Course Title	Credits	Hours		CIA	ESE	Total
				L	P			
Semester I								
1	P21MTT11	Core I- Algebra	4	5	-	25	75	100
2	P21MTT12	Core-II- Real Analysis-I	4	5	-	25	75	100
3	P21MTT13	Core-III- Ordinary Differential Equations	4	5	-	25	75	100
4	P21MTT14	Core-IV-Graph Theory	4	5	-	25	75	100
5	P21MTT15	Core - V- Computer Oriented Numerical Methods	4	5	-	25	75	100
6	P21CSS11	Supportive Course- I(Skill)- Computer Skills for Web Designing and Video Editing	2	-	4	25	75	100
		Total	22			-	-	600
Semester II								
7	P21MTT21	Core VI-Vector Space and Linear Transformation	4	5	-	25	75	100
8	P21MTT22	Core-VII-Real Analysis -II	4	5	-	25	75	100
9	P21MTT23	Core-VIII-Partial Differential Equations	4	4	-	25	75	100
10	P21MTT24	Core-IX-Topology	4	5	-	25	75	100
11	P21MTT25	Core-X- Optimization Techniques	4	5	-	25	75	100
12		Non-Major Elective-I	4	4		25	75	100
13	P21MTS22	Supportive Course II(Skill)MATLAB	2	-	2	25	75	100
		Total	26			-	-	700
Semester III								
14	P21MTT31	Core XI- Complex Analysis	4	5	-	25	75	100
15	P21MTT32	Core-XII- Measure Theory	4	5	-	25	75	100
16	P21MTT33	Core-XIII-Differential Geometry	4	4	-	25	75	100
17	P21MTT34	Core-XIV- Classical Dynamics	4	4	-	25	75	100
18	P21MTT35	Core-XV- Calculus of variations and Integral Equations	4	5	-	25	75	100
19	P21MTT36	Core XVI- Functional Analysis	4	5	-	25	75	100
20	P21WSS33	Supportive Course III Women Empowerment	2	2	-	25	75	100
		Total	26					700
Semester IV								
21	P21MTE411/ 221MTE412/ 21MTE413/ 21MTE414/	Elective-I* Number Theory/Automata Theory/Probability Theory and Statistics/Astronomy / Any MOOC Course ${ }^{\$}$	4	4	-	25	75	100

22	P21MTE421/	Elective -II* P21MTE422/ P21MTE423/ F21MTE424/	Fuzzy sets and their Application/ Stochastic Processes /Fluid Dynamics/Tensor Analysis and Special Theory of Relativity/ Any MOOC Course	4	4	-	25	75

Non Major Elective

The candidates who have joined the PG Programme, can also undergo Non Major Elective offered by other Departments.

Non Major Elective (NME) offered by Department of Mathematics

S.No	Course code	Non Major Elective Courses
1	P21MTN211	Numerical Methods
2	P21MTN212	Operation Research
3	P21MTN213	Discrete Mathematics
4	P21MTN214	Differential Equations
5	P21MTN215	Fourier series and Laplace Transforms
6	P21MTN216	Statistics
7	P21MTN217	Mathematical Aptitude

Additional Credit Courses (Mandatory)

1. Semester-I

Course Code	Course Name	Category	Credit
P21MTV11	Python Language and Python Lab	Value Added Program- I	2

2. Semester-II

Course Code	Course Name	Credit
P21MTI21	Internship/Industrial Training	2

3. Semester-III

Course Code	Course Name	Credit
P21MTO31	Online Courses - MOOC Courses	2

4. Semester-IV

Course Code	Course Name	Category	Credit
P21MTV42	Mathematical Modelling	Value Added Program- II	2

*Those who have CGPA 9 and want to do the project in industry/institution during IV semester., these two paper can be opted in III semester
${ }^{\$}$ Students can take one 4 credit course in MOOC as elective or two 2 credit course in MOOC as elective with the approval of Department committee

Outside class hours (Attendance compulsory)

- Health, Yoga and Physical fitness.
- Library information access and utilisation
- Employability Training.
- Students Social Responsibility.

SEMESTER- I

COURSE CODE : P21MTT11

ALGEBRA

Course Outcomes

CO	Course Outcomes	Knowledge Level
CO1	Students will have a working knowledge of important mathematical concepts in abstract algebra such as definition of a group, order of a finite group and order of an element .	K2
CO2	Students will be introduced to and have knowledge of many mathematical concepts studied in abstract mathematics such as permutation groups, factor groups and abelian groups.	K3
CO3	Students will actively participate in the transition of important concepts such homeomorphisms \& isomorphism's from discrete mathematics to advanceed abstract mathematics.	K4
CO4	Students will gain experience and confidence in proving theorems. A blended teaching method will be used requiring the students to prove theorems sive the student the experience, knowledge, and confidence to move forward in the study of mathematics.	K5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes

$\mathrm{COs} / \mathrm{POs}$	PO 1	PO 2	PO 3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	S	M	S	M	S	M	M	S	S	S
CO 4	S	S	S	S	S	S	S	S	M	S

S - Strong , M - Moderate , L- Low

Course Outcome:

CO	Course Outcomes	Knowledge Level
CO 1	Students will be able to demonstrate competence with elementary properties of sets By proving identities involving union and intersection and Cartesian Products of Sets .	K 2
CO 2	Students will be able to demonstrate competence with elementary properties of Functions by proving results involving composite functions and inverse functions .	K 3
CO 3	Students will be able to demonstrate competence with the algebraic and order Properties of real numbers	K 4
CO 4	Students will be able to demonstrate competence with properties of real numbers by finding supremum and infimum of sets and using the completeness property of real numbers	K 5
CO 5	Students will be able to demonstrate ability to use Taylor Theorem, the Mean value Theorem, and use L'Hospital'S Rule to compute limits of functions.	K 6

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	M	S	S	S	M	S	S
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	S	S	M	S	M	S	M	S	M	S
CO 4	S	M	S	S	M	S	S	S	S	S
CO 5	S	S	M	S	S	S	S	S	S	S

S - Strong, M - Moderate, L- Low

Course Outcomes:

CO	Course Outcomes	Knowledge Level
CO 1	Recognize differential equations that can be solved by each of the three methods - direct integration, separation of variables and integrating factor method - and use the appropriate method to solve them .	K 2
CO 2	Use an initial condition to find a particular solution of a differential equation, given a general solution .	K 2
CO 3	Check a solution of a differential equation in explicit or implicit form, by substituting it into the differential equation .	K 3
CO 4	Understand the terms " exponential growth/decay", proportionate growth rate" and "doubling/halving time" when applied to population models, and the terms,, exponential decay, "decay constant" and "half- life"' when applied to radioactivity.	K 5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

$\mathrm{COs} / \mathrm{POs}$	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	M	S	S	S
CO 2	S	M	S	S	S	M	M	M	M	S
CO 3	S	S	M	S	S	S	S	S	S	S
CO 4	S	S	S	M	S	S	S	S	S	S

S - Strong, M - Moderate, L- Low

Course Outcomes:

CO	Course Outcomes	Knowledge Level
CO 1	State all of the technical definitions covered in the course (such as a graph, tree, colouring, cut edges, cut vertices, connectivity"s, cycle and tours, digraph, flows and cuts)	K2
CO 2	State all of the relevant theorems covered in the course	K 3
CO 3	Formulate graph theoretic models to solve real world problems (THE MAX-FLOW MIN- CUT)	K 4
CO 4	Analyze combinatorial objects satisfying certain properties and answer questions related to existence (proving the existence or non- existence of such objects), construction (describing how to create such objects in the case they exist), enumeration (computing the number of such objects), and optimization (determining which objects satisfy a certain external property)	K 4
CO 5	Decision/network will take existing/proposed network /social to avoid ambiguity.	K 6

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate; K6- create
Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	S	S	S	S	S	M	S
CO 3	S	S	S	S	M	S	S	S	S	S
CO 4	S	S	S	S	S	S	S	S	S	S
CO 5	S	S	S	S	S	S	S	S	S	S

S - Strong , M - Moderate , L- Low

COURSE CODE : P21MTT15

Course Outcomes :

CO	Course Outcomes	Knowledge Level
CO 1	Apply numerical methods to find our solution of algebraic equations using different methods under different conditions and numerical solution of system of algebraic equations.	K 3
CO 2	Apply various interpolation methods and finite difference concepts.	K 3
CO 3	Workout numerical differentiation and integration whenever and wherever routine methods are not applicable.	K 3
CO 4	Work numerically on the ordinary differential equations using different methods through the theory of finite differences.	K 3
CO 5	Work numerically on the partial differential equations using different methods through the theory of finite differences.	K 3

K1- Remember,K2- Understand,K3-Apply,K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	M	S	S
CO 2	S	S	S	S	M	S	S	S	S	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	S	M	S	S	S	S	S	S
CO 5	S	S	S	S	M	S	S	S	S	S

S- Strong, M-Medium, L-Low

SEMESTER- II

COURSE CODE : P21MTT21 VECTOR SPACE AND LINEAR TRANSFORMATION

Course Outcomes:

CO	Course Outcomes	Knowledge Level
CO 1	Determine relationship between coefficient matrix inevertability and solutions to a system of linear equations and the inverse matrices.	K 2
CO 2	Find a basis for the row space, column space and null space of a matrix and find the rank and nullity of a matrix.	K 3
CO 3	Find the matrix representation of a linear transformation given bases of the relevant relevant vector spaces.	K 4
CO 4	Use computational techniques and algebraic skills essential for the study of systems of linear equations, matrix algebra, vector spaces, Eigen values and Eigen vectors, orthogonality and diagonalization. (Computational and Algebraic Skills).	K 5
CO 5	Work collaboratively with peers and instructors to acquire mathematical and understanding and to formulate and solve problems and present solutions.	K 6

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO 2	PO3	PO 4	PO 5	PSO	PSO 2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	M	S
CO 2	S	S	S	M	S	S	S	S	S	S
CO 3	S	S	S	S	S	S	M	S	M	S
CO 4	S	S	M	S	S	S	S	S	S	S
CO 5	S	S	S	S	M	S	S	S	S	S

S-Strong $=3, \mathrm{M}-$ Medium $=2$, L-Low $=1$

Course Outcomes:

CO	Course Outcomes	Knowledge Level
CO 1	Investigate the ideas of continuity and inverse images of open and closed sets, functions continuous on compact sets.	K 2
CO 2	Differentiate the concepts of connectedness and implement them on various sets.	K 3
CO 3	Examine the derivatives of functions and apply few theorems based on it.	K 4
CO 4	Investigate properties of monotonic functions.	K 5
CO 5	Learn the properties of Riemann- Stieltjes integral.	K 6

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes :

$\mathrm{COs} / \mathrm{POs}$	PO 1	PO 2	PO 3	PO 4	PO	PSO 1	PSO 2	PSO 3	PSO 4	PSO5
CO 1	S	S	S	M	S	S	S	S	S	S
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	S	S	M	S	M	S	S	S	S	S
CO 4	S	M	S	S	S	S	M	M	S	S
CO 5	S	S	M	S	S	S	M	S	S	M

S-Strong $=3, \mathrm{M}-$ Medium $=2$, L-Low $=1$

Course Outcomes:

CO	Course Outcomes	Knowledge Level
CO 1	Recognize differential equations that can be solved by each of the three methods - direct integration, separation of variables and integrating factor method - and use the appropriate method to solve them.	K 2
CO 2	Use an initial condition to find a particular solution of a differential equation, given a general solution.	K 3
CO 3	Check a solution of a differential equation in explicit or implicit form, by substituting it into the differential equation.	K 4
	Understand the terms "exponential growth/decay",, proportionate growth rate" and "doubling/halving time" when applied to population models, and the terms "exponential decay"", "decay constant" and "half- life" when applied to radioactivity.	K 5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

$\mathrm{COs} / \mathrm{POs}$	PO 1	PO 2	PO 3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO 5
CO 1	S	S	S	S	S	S	M	S	S	S
CO 2	S	M	S	S	S	M	M	M	M	S
CO 3	S	S	M	S	S	S	S	S	S	S
CO 4	S	S	S	M	S	S	S	S	S	S

S-Strong $=3$, M-Medium $=2$, L-Low $=1$

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Know how the topology on a space is determined by the collection of open sets, by the collection of closed sets, or by a basis of neighbourhoods at each point.	K 2
CO 2	Know the definition and basic properties of connected spaces, path connected spaces, compact paces, and locally compact spaces.	K 3
CO 3	Know what it means for a metric space to be complete, and you can characterize compact metric spaces.	K 4
CO 4	Familiar with the Urysohn lemma and the Tietze extension theorem, and you can characterize metrizable spaces.	K 5
CO 5	Familiar with the construction of the fundamental group of a topological space and applications to covering spaces and homology theory.	K 5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	M	S	S	S	S	S	S
CO 2	S	S	S	S	S	M	S	S	M	S
CO 3	S	S	M	S	M	S	S	S	S	S
CO 4	S	M	S	S	S	S	S	M	S	S
CO	S	S	M	S	S	S	S	S	S	S

$$
\text { S-Strong }=3, \text { M-Medium }=2, \text { L-Low }=1
$$

Course Outcomes:

CO	CO Statement	Knowledge Level
CO1	Analyze the real-life systems with limited constraints.	K 2
CO 2	Identify the mathematical nature of a given optimization problem.	K 3
CO 3	Analyze a range of classes of optimization problems.	K 4
CO 4	Identify solution methods for the optimization problems studied.	K 5
CO 5	Depict the systems in a mathematical model form.	K 6

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S	S	S	S	M	S
CO 2	S	S	S	M	S	S	S	S	M	S
CO 3	S	S	S	S	S	S	S	M	S	S
CO4	S	S	M	S	S	S	S	M	S	S
CO5	S	S	S	S	M	S	S	S	S	S

S- Strong=3, M-Medium=2, L-Low $=1$

SEMESTER -III

COURSE CODE: P21MTT31

COMPLEX ANALYSIS

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Explain and apply Cauchy's integral formula and some of its consequences.	K 2
CO 2	Explain the convergence of power series and develop analytical capabilities in Taylor or Laurent series in a given domain.	K 3
CO 3	Define the fundamental concepts of complex numbers and its properties, Exponential, logarithmic, trigonometric and hyperbolic complex functions.	K 4
CO 4	Describe Holomorphic and harmonic complex functions and list different examples.	K 5
CO 5	State Complex integral on a path - Cauchy theorem and Cauchy integral formula name zeros and singularities of a Complex function and the residue theorem.	K 6

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6-Create
Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	M	S	S	S	S	M	S
CO 2	S	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	M	S	S	M	S	S
CO 4	S	M	S	S	S	S	M	S	S	S
CO 5	S	S	M	S	S	M	S	S	S	S

S-Strong $=3$, M-Medium=2, L-Low $=1$

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Understanding the basic concepts of the definition of general Lebesque integral.	K 2
CO 2	Derives the concepts of Borel sets, measurable functions, differentiation of monotone functions	K 4
CO 3	Demonstrate statement of main results in fundamental integral theorems, monotone convergence theorem, and its related proves and results.	K 5
CO 4	Demonstrate the proof in integration in product spaces and signed measures.	K 6
CO 5	Apply the theory of this course to solve real problems in difficult situations.	K

K1- Remember, K2- Understand, K3-Apply, K4-Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	M	S	S
CO 3	S	S	S	S	S	S	S	S	S	S
CO 4	S	S	S	S	S	M	S	S	S	S
CO5	S	S	S	S	S	S	M	S	S	M

S-Strong $=3$, M-Medium $=2$, L-Low $=1$

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Understand planes, spaces curves, arc, nature of points, geodesic concepts Prove theorems planes, surfaces, Identification of important	K2
CO 2	types of curves in surfaces, including principal curves, asymptotic curves and geodesics using fundamental existence theorem for space curves	K3
CO 3	Enumerate some standard examples in geometry, such as surfaces of constant Gaussian curvature, compact and non - compact surfaces, and surfaces of revolution	K4
CO 4	Evaluate Gaussian and mean curvatures using variety of methods including patch computations .Differential equations of geodesics using normal property	K5
CO 5	Apply/Create real time situation.	K6

K1-Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create
Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S	S	S	S	S	M
CO2	S	S	S	M	S	S	S	S	M	S
CO3	S	S	S	S	S	S	M	S	S	S
CO4	S	S	M	S	S	S	S	M	S	S
CO5	M	M	S	L	S	S	M	S	S	S

S-Strong $=3, \mathrm{M}-$ Medium $=2$, L-Low $=1$

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Solve the Lagrange's equations for simple configurations using various Methods.	K 2
CO 2	Understand the concept of Hamilton Jacobi Theory.	
CO 3	Understand the concept canonical Transformations. CO 4	Develop skills in formulating and solving physics problems.
CO 5	Get idea of dynamical systems are of relatively recent origin, the concept of motion in phase- space and its geometrical depiction is simple.	K 6

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	S	S	S	M	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	S	M	S
CO 3	S	S	M	S	S	S	M	M	S	S
CO 4	S	M	S	S	S	S	S	S	S	S
CO 5	S	S	S	S	M	M	S	M	S	S

S- Strong =3, M-Medium $=2$, L-Low $=1$

COURSE CODE: P21MTT35 CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Demonstrate to understand competence with the basic ideas of TheMethod of Variations in Problems with fixed Boundaries, and unknown functions are in integral equations.	K 2
CO 2	Develop and solve problems in integral equations, special kind of equation for several independent variables.	$\mathrm{K} 3, \mathrm{~K} 4$
CO 3	Analyse Parametric forms with moving boundaries and other problems and kernel for integral equations.	K 4
CO 4	Apply Euler's finite difference method, The Ritz method and Kantorovich's method in Vibrational Problems, and in the field of extremely	K 6
CO 5	Evaluate the extremals of functionals, solving applied problems, Solve differential and integral equations Compose clear and accurate proofs using the concepts of reduction to a system of Algebraic equations.	$\mathrm{K} 4, \mathrm{~K} 5, \mathrm{~K} 6$

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	S	S	S	S	S
CO 5	S	S	S	S	S	S	S	S	S	M

S- Strong =3, M-Medium = 2, L-Low = 1

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Describe properties of normed linear spaces and construct examples of such spaces.	K 2
CO 2	Apply basic theoretical techniques to analyze linear functionals and operators on Banach and Hilbert spaces.	K 3
CO 3	Apply Finite-Dimensional Spectral Theory survey of the situation.	K 4
CO 4	Apply theorems to do problems.	K 5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	M	S
CO 2	S	S	S	M	S	S	S	S	M	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	S	M	S	S	S

S- Strong=3, M-Medium=2, L-Low $=1$

SEMESTER -IV

COURSE CODE : P21MTE411

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Demonstrate factual knowledge including the mathematical notation and terminology of number theory.	K 2
CO 2	Construct mathematical proofs of statements and find counterexamples to false statements in Number Theory.	K 3
CO 3	Apply theoretical knowledge to problems of computer Security.	K 4
CO 4	Analyze the logic and methods behind the major proofs in number theory.	K 5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create
Mapping with Programme Outcomes:

$\mathrm{COs} / \mathrm{POs}$	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	M	S	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	S	S	M	S	S

S- Strong =3, M-Medium=2, L-Low =1

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Acquire a fundamental understanding of the core concepts in automata theory and formal languages	K 2
CO 2	Design grammars and automata (recognizers) for different language classes	K 3
CO 3	Identify formal language classes and prove language membership properties	K 4
CO 4	Prove and disprove theorems establishing key properties of formal languages and automata	K 5
CO 5	Solve the sums based on automata and grammar	K 5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

$\mathrm{COs} / \mathrm{POs}$	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	S	S	S	S	S	S	S	S	S	M
CO 2	S	S	S	M	S	S	M	S	S	S
CO 3	S	S	S	S	S	S	S	M	S	S
CO 4	S	S	M	S	S	S	S	S	S	S
CO 5	S	S	S	S	M	S	M	S	S	S

$$
\text { S- Strong }=3, \text { M-Medium }=2, \text { L-Low }=1
$$

COURSE CODE : P21MTE413
PROBABILITY THEORY AND STATISTICS
Course Outcomes:

CO	CO Statement	Knowledge Level
CO1	Demonstrate the basic concepts of statistics, probability and random variables	K2
CO2	Apply the concepts in finding the moments of the distributions.	K 3
CO3	Identify the type of the distribution and estimation	K 4
CO4	Understand the basics of sampling distribution theory	K 5

K1- Remember,K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping With Programme Outcomes:

$\mathrm{COs} / \mathrm{POs}$	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	S	M	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	M	S	S	S	S

S- Strong =3, M-Medium=2, L-Low = 1

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Defining about the observed properties of physical systems that comprise the known universe.	K 1
CO 2	Demonstrate their ability to read, understand, and critically analyze the astronomical/physical concepts.	K 2
CO 3	Applying their physics and mathematical skills to problems in the areas of planetary science.	K 3
CO 4	Analyze to draw valid scientific conclusions and communicate those conclusions in a clear and articulate manner.	K 4

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping With Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	S	M	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	M	S	S	S	S

S- Strong =3, M-Medium=2, L-Low = 1

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Demonstrate the basic concepts of fuzzy sets and membership functions, Know various AI search algorithms.	K 2
CO 2	Ability to find examples for crisp equivalence relation.	K 3
CO 3	Applying the concept in Fuzzy Morphisms.	K 4
CO 4	Understand the basics of sampling distribution theory.	K 5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping With Programme Outcome:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	M	S	M	S	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	S	S	S	S	S

S-Strong $=3$, M-Medium=2, L-Low=1

Course Outcomes:

CO Number	CO Statement	Knowledge Level
$\mathrm{CO1}$	Demonstrate the basic concepts of Stochastic process, Markov Chains.	K2
CO 2	Apply the concepts in Birth and Death Distribution Process.	K3
CO 3	Identify the type of the Differential Equations for A Wiener Process -Kolmogorov Equation.	K 4
CO 4	Understand the basics of sampling distribution theory.	K5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	M	S	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	S	M	M	S	M

S-Strong =3, M-Medium = 2, L-Low=1

Course Outcomes:

CO	CO Statement	Knowledge Level
CO 1	Understand the fundamental knowledge of fluids and its properties	K 2
CO 2	Describe the concepts and equations of fluid dynamics.	K 3
CO 3	Apply thermodynamic control volume concepts in fluid dynamics for applications that include momentum, mass and energy balances	K 4
CO 4	Analyze the approximate solutions of the Navier-Stokes equation	K 5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	M	S	S	S
CO 3	S	S	S	S	S	S	S	M	S	S
CO 4	S	S	M	S	M	S	S	S	M	S

S- Strong =3, M-Medium =2, L-Low=1

COURSE CODE: P21MTE424
 TENSOR ANALYSIS AND SPECIAL THEORY OF RELATIVITY

Course Outcomes:

CO Number	CO Statement	Knowledge Level
CO 1	Understand concept of tensor variables and difference from scalar or vector variables.	K 2
CO 2	Derive base vectors, metric tensors and strain tensors in an arbitrary coordinate system.	K 3
CO 3	Investigate the Christoffel symbols which provide a concrete representation of the connection of (pseudo-) Riemannian geometry in terms of coordinates on the manifold.	K 4
CO 4	Apply Riemannan-Christoffel tensor to problems of differential geometry, electrodynamics and relativity.	K 5

K1- Remember, K2- Understand, K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

$\mathrm{COs} / \mathrm{POs}$	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	M	S	S	S
CO 3	S	S	S	S	S	S	S	M	S	S
CO 4	S	S	M	S	S	S	S	S	S	M

S- Strong $=3, \mathrm{M}-\mathrm{Medium}=2, \mathrm{~L}-\mathrm{Low}=1$

Rules And Regulation Of The Project:

1. The Project Area/title must be any one of the following
(i)Pure Mathematics
(ii) Applied Mathematics
(iii) Mathematical Application in Real Time Activities.
2. Student allotment Method will be decided by the Department Faculties
(In October $2^{\text {nd }}$ week)
3. They are Four Project Common Meet(In Front of All Faculty) Power point presentation
(i). First Meet - November last week. Work done - Topic and Area will be decided (5 marks)
(ii). Second Meet - January $1^{\text {st }}$ week. Work done- 25% work (5 marks)
(iii). Third Meet -February $1^{\text {st }}$ week, Work done -50% work (5 marks)
(iv). Fourth Meet - March $1^{\text {st }}$ week, work done - 90% work (5 marks)
4. Project Record Submission - Third week of March

NON MAJOR ELECTIVE - MATHEMATICS DEPARTMENT OFFERING COURCES TO OTHER DEPARTMENT

COURSE CODE : P21MTN211

Course Outcome:

CO Number	CO Statement	Knowledge Level
CO 1	Understand the equations using different methods under differ conditions and numerical solutions of system algebraic equation.	K 1
CO 2	Apply various interpolation methods and finite different concepts	K 3
CO 3	Analyse differentiation and integration whenever and where ever routine methods are not applicable.	K 4
CO 4	Evaluate the ordinary differential equations using different methods through the theory of finite differences.	K 5
CO 5	Evaluate the partial differential equations using different methods through the theory of finite differences.	K 5

K1 - Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

Course Outcome:

CO Number	CO Statement	Knowledge Level
CO1	Understand the application of OR and frame a LP Problem with solution -graphic and through solver add in excel.	K1
CO 2	Analyze and interpret results of transportation and problem using appropriate method Solutions of assignment and problem using appropriate method.	K 2
CO 3	Evaluate simple model of L.P.P.	K 3
CO 4	Understand and evaluate of CPM and PERT define basic components of Network and find critical path.	K 3
CO5	Find the replacement period of equipment that failssuddenly/gradually.	$\mathrm{K} 4, \mathrm{~K} 5$

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Course Outcome:

CO Number	CO Statement	Knowledge Level
CO1	Understanding of some Logic truth tables	K 2
CO2	Prove / define basic normal forms	K 3
CO3	To analyses the concepts of free and bound variable formulas	K 4
CO4	Understanding the concepts of Grammars	K 4
CO5	Basic concepts of Languages and basic definitions of Automata	K 6

K1- Remember, K2- Understand , K3-Apply, K4- Analyse, K5- Evaluate; K6- create

Course Outcome:

CO Number	CO Statement	Knowledge Level
CO 1	Solve linear equations with variable coefficients.	K 2
CO 2	Understand the fundamental properties of the PDE	$\mathrm{K} 1 \& \mathrm{~K} 2$
CO 3	Apply the Differentation Of Higher Order Methods to solve Practical life problems	K 3
CO 4	Aolve partial differential equations using Lagrange"s method and Charpit`s method	$\mathrm{K} 3 \& \mathrm{~K} 4$
CO 5	Create real life problems into ordinary differential equations.	$\mathrm{K} 4 \& \mathrm{~K} 5$

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Course Outcomes:

CO Number	CO statement	Knowledge level
CO 1	Integral equations of Fourier Transforms	K4
CO 2	Demonstrate the Fourier Transforms	K3
CO 3	Understand the fundamental properties of the Laplace transforms	K1\&K2
CO 4	Apply the Laplace inverse transforms to solve simultaneous equations	K 3

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate, K6 - Create

Course Outcomes:

CO Number	CO statement	Knowledge level
CO1	Analyse -Primary data-Secondary data	K4
CO2	Measure of Central Tendency and Measure of Variation	K3
CO3	Understand and apply Correlation and Regression	K1\&K2
CO4	Understand Theoretical distributions	K2
CO5	Sampling Theory and Testing of Significance: Estimation-Evaluate	K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate, K6 - Create

COURSE CODE	P21MTN217	MATHEMATICAL APTITUDE	L	T	P	C
Elective - NME			4	-	-	4

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	M	S	S	S	S	M	M
CO2	S	M	S	M	M	M	M	S	S	M
CO3	S	S	S	S	S	S	M	S	S	S
CO4	M	M	S	M	S	S	S	M	S	S
CO5	M	S	S	S	S	M	S	S	S	M

*S-Strong; M-Medium; L-Low

COURSE CODE	P21MTS22	MATLAB	L	T	P	C
SUPPORTIVE COURSE -II			-	2	-	2

Course Outcomes:

CO	CO Statement	Knowledge Level
CO1	Demonstrate the basic concepts of types of mat lab mathematical operators, Relational, binary and logical operators	K2
CO2	Apply the concepts in expanding and reducing size- reshaping, shifting and sorting matrices.	K3
CO3	Identify different types of Matlab and Matlab file	K4
CO4	Understand the basics of document layout and organization	K5
CO5	Emphasis on estimating a document class and fine tuning text .	K6

K1- Remember: K2- Understand: K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	S	M	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	S	S	M	S	S
CO 5	S	S	S	S	M	S	S	S	M	S

S-Strong $=3, \mathrm{M}-$ Medium $=2, \mathrm{~L}-$ Low $=1$

Value Added Program

Course Outcomes (CO)

CO 1	To implement basic concepts of operators and functions.	K 1
CO 2	To Review various string, list, tuple and dictionaries.	K 2
CO 3	To evaluate the functionality of an exception handling.	K 3
CO 4	To analyze the concept of classes and objects.	K 4

K1- Remember: K2- Understand: K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	S	M	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	S	S	M	S	S
CO 5	S	S	S	S	M	S	S	S	M	S

S-Strong $=3$, M-Medium $=2$, L-Low $=1$

COURSE CODE	P21MTV11	PYTHON LAB	L	T	P	C
Value Added Program- I			-	-	-	2

Course Outcomes (CO)

CO1	To implement basic operators and function concepts.	K3
CO 2	To Review various string and list methods.	K4
CO 3	To execute exception handling.	K5

Mapping with Programme Outcomes:

COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	S	M	S
CO 3	S	S	S	S	S	S	M	S	S	S

S- Strong $=3, \mathrm{M}-$ Medium $=2, \mathrm{~L}-$ Low $=1$

COURSE CODE	P21MTV42	Mathematical Modelling	L	T	P	C
SEMESTER - IV			-	-	-	2

COURSE OUTCOME:

CO1	Develop Mathematical Models For Trigonometry Application	K3
CO2	To Review minimum Resource utilization.	K4
CO3	Develop Mathematical Modeling for real time	K5
CO4	To analyze Mathematical Models to solve real time problems.	K5

K1- Remember: K2- Understand: K3-Apply, K4- Analyse, K5- Evaluate, K6- Create

Mapping with Programme Outcomes:

COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	M	S	S	S	S	M	S
CO 3	S	S	S	S	S	S	M	S	S	S
CO 4	S	S	M	S	S	S	S	M	S	S

S-Strong $=3, \mathrm{M}-$ Medium $=2$, L-Low $=1$

